Pharmabiz
 

CEL-SCI, NEOMED develop new vaccine to prevent and treat breast cancer

Vienna, VirginiaTuesday, February 5, 2013, 14:05 Hrs  [IST]

CEL-SCI Corporation,  a company dedicated to research and development directed to improving the treatment of cancer and other diseases, has  announced that its longstanding collaboration with Northeast Ohio Medical University (NEOMED) has produced a new investigational breast cancer vaccine which prevents and treats a HER-2/neu expressing breast cancer tumour in a mouse model of the disease.

In animal tests this vaccine has shown reduction of number of tumours, reduction of tumour mass, absence of tumour in lymph nodes or peritoneal membranes and  changes in angiogenesis. Kenneth S Rosenthal of Northeast Ohio Medical University presented these findings in detail at the GTCBIO Immune Responses in the Tumor Microenvironment Workshop, January 30, 2013 to February 1, 2013 in San Diego, California.

Dr Rosenthal, Sarah Stone and Robin Edmonds from Northeast Ohio Medical University in collaboration with Dr. Daniel H. Zimmerman, CEL-SCI Corporation's senior vice president of research, Cellular Immunolgy, designed and tested the L.E.A.P.S. (Ligand Epitope Antigen Presentation System) technology vaccine. J-HER chemically links the J-ICBL (immune cell binding ligand) peptide to a minimal antigenic peptide (epitope) from the HER-2/neu protein, a protein present in most human breast tumour cells. This protein is the target for different types of immunotherapy with sales of many billions of dollars. Blocking this receptor protein with an antibody causes the tumour cells to commit suicide (apoptosis). The L.E.A.P.S vaccine activates a T lymphocyte response targeted to this protein that promotes killing and control of the tumour cell. In these studies, mice were immunized with the J-HER vaccine before, or one week after implantation of HER-2/neu breast cancer cells. In both cases the immune response initiated by the immunization significantly blocked further development and progression of tumours in most of the animals. Another J-LEAPS vaccine produced similar anti-tumour results in a mouse model for a different cancer by another researcher working with Dr. Rosenthal.

L.E.A.P.S. is a novel peptide platform technology that enables CEL-SCI to design and synthesize proprietary immunogens. Any disease for which an antigenic sequence has been identified, including infectious, parasitic, malignant or autoimmune diseases and allergies, are potential therapeutic targets for the application of L.E.A.P.S. technology. In addition to the J-HER vaccine, L.E.A.P.S. vaccines have been developed to prevent or treat herpes simplex virus, HIV, influenza and rheumatoid arthritis.

The concept behind the L.E.A.P.S. technology is to mimic cell-cell interactions that activate immune cells with synthetic peptides. Depending upon the type of L.E.A.P.S. construct and ICBL used, CEL-SCI is able to direct the outcome of the immune response. The J-ICBL stimulates the only cell that can initiate an immune response, the dendritic cell. J-LEAPS vaccines activate dendritic cells from humans as well as mice. The activated dendritic cells direct T-cells to deliver the appropriate protective or therapeutic response. For J-HER, this response would activate tumour specific T killer cells. A mixture containing J-HER and similar J-LEAPS vaccines can readily be synthesized and used to treat breast cancers in humans.

 
[Close]