Pharmabiz
 

Certara releases version 14 of Simcyp Simulator for predicting drug behavior in virtual patient populations

Princeton, New JerseyFriday, November 21, 2014, 16:00 Hrs  [IST]

Certara, the leading global technology-enabled drug development and drug safety consultancy, has released version 14 of its Simcyp Population-based Simulator, which enables biopharmaceutical researchers to predict drug-drug interactions and pharmacokinetic-pharmacodynamic (PK-PD) outcomes in virtual human and animal populations.

“Simcyp Simulator is the industry’s most sophisticated solution for predicting drug-drug interactions, assisting in dose selection, and informing clinical decisions related to product labeling,” said Certara chief executive officer, Edmundo Muniz, M.D “It is used by all of the top 10 pharmaceutical companies, together with the US Food and Drug Administration (US FDA) and other key regulatory agencies.”

The Simcyp Simulator can be used to select ideal dosing regimens; determine drug-drug interactions; and predict PK changes in special populations, such as neonates, pregnant women or patients with renal impairment who receive multiple drugs, in order to inform study design and guide appropriate labelling language.

Simcyp whole body simulation methodology can predict the pharmacokinetics of drug compounds and proteins based on in vitro data. The simulator includes a unique set of genetic, physiological and epidemiological databases that facilitate the simulation of virtual populations from around the globe. V14 platform enhancements include the following:Oral absorption models The Simcyp Simulator’s ADAM (Advanced Dissolution Adsorption Metabolism) module now contains extended features for handling fed versus fasted oral absorption models, which take account of some of the more complex food effects such as changes in viscosity. In addition, its Mechanistic Permeability (Mech Perf) human model can estimate drug permeability in different regions of the gastrointestinal (GI) tract, including the colon. Physiologically-based (PB) PK mechanistic models are playing an increasingly important role in regulatory submissions to the FDA.

Improved gut wall modeling A Nested-Enzyme-Within-Enterocyte (NEWE) model has been added to the simulator which takes into account the enterocyte turnover in the gut wall and the resulting changes in the level of intestinal drug metabolising enzymes. Clients can now estimate a value for the proportion of unbound drug in the gut wall based on the physiological chemistry and blood-binding capabilities of the drug and the tissue composition of the gut wall. This unique mechanistic model allows the Simcyp Simulator to more closely mimic the actual interactions of drugs with gut wall enzymes during the absorption process.  

Updated compound libraries The V14 platform contains new compound files for Pravastatin, Lorazepam, Probenecid and Cyclosporine. Moreover, Rifampicin can be administered as a single dose to assess OATP-mediated inhibition. Updates were also applied to the multiple-dose Rifampicin, Metoprolol and Digoxin files. In addition to providing compound files, Certara also creates defined patient populations to expedite virtual clinical trials. For example, the Simcyp Simulator has virtual populations based on ethnicity such as Japanese or Chinese, and specific physiological conditions, including pregnant women, patients with various severity of cirrhosis, and those with different levels of renal impairment.  

Matching real clinical trials Clients increasingly want their in-silico and virtual trials to match what they will do in the real clinical trials more closely. They want to mirror the complex dose scheduling and combinations in the form of administration. If the initial dose will be given as an injection and then followed by tablets, they want the same to happen in the virtual trial. In addition to providing that capability, the simulator now also gives clients the option of injecting drugs into specific organs and following the kinetics using the PBPK model.

Monitoring multiple metabolites Clients can now monitor two drug metabolites at the same time without having to repeat the simulation. As drug metabolites can play significant roles in some aspects of drug safety and pharmacological response, this is a very practical addition to the platform.

Simcyp’s clients form a Consortium which helps to guide scientific development at the company, ensuring that its products continue to meet, and exceed, industry needs.Simcyp Simulator v14 is now available to all Consortium members and academic associates with current not-for-profit licence agreements.

 
[Close]